Efficient Delivery of FMR1 across the Blood Brain Barrier Using AAVphp Construct in Adult FMR1 KO Mice Suggests the Feasibility of Gene Therapy for Fragile X Syndrome

Author:

Chadman Kathryn K.1ORCID,Adayev Tatyana1,Udayan Aishwarya12,Ahmed Rida13ORCID,Dai Chun-Ling1ORCID,Goodman Jeffrey H.14,Meeker Harry1,Dolzhanskaya Natalia1,Velinov Milen2ORCID

Affiliation:

1. NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA

2. Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA

3. Macaulay Honors College at Hunter CUNY, New York, NY 10065, USA

4. Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA

Abstract

Background Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. Gene therapy may offer an efficient method to ameliorate the symptoms of this disorder. Methods An AAVphp.eb-hSyn-mFMR1IOS7 vector and an empty control were injected into the tail vein of adult Fmr1 knockout (KO) mice and wildtype (WT) controls. The KO mice were injected with 2 × 1013 vg/kg of the construct. The control KO and WT mice were injected with an empty vector. Four weeks following treatment, the animals underwent a battery of tests: open field, marble burying, rotarod, and fear conditioning. The mouse brains were studied for levels of the Fmr1 product FMRP. Results: No significant levels of FMRP were found outside the CNS in the treated animals. The gene delivery was highly efficient, and it exceeded the control FMRP levels in all tested brain regions. There was also improved performance in the rotarod test and partial improvements in the other tests in the treated KO animals. Conclusion: These experiments demonstrate efficient, brain-specific delivery of Fmr1 via peripheral administration in adult mice. The gene delivery led to partial alleviation of the Fmr1 KO phenotypical behaviors. FMRP oversupply may explain why not all behaviors were significantly affected. Since AAV.php vectors are less efficient in humans than in the mice used in the current experiment, studies to determine the optimal dose using human-suitable vectors will be necessary to further demonstrate feasibility.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3