Mn-XRN1 Has an Inhibitory Effect on Ovarian Reproduction in Macrobrachium nipponense

Author:

Chen Tianyong1ORCID,Yuan Huwei2ORCID,Qiao Hui3,Jiang Sufei3,Zhang Wenyi3,Xiong Yiwei3,Fu Hongtuo13,Jin Shubo3ORCID

Affiliation:

1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China

2. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China

3. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract

XRN1 is an exoribonuclease that degrades mRNA in the cytoplasm along the 5′–3′ direction. A previous study indicated that it may be involved in the reproduction of Macrobrachium nipponense. Quantitative real-time PCR was used to detect the spatiotemporal expression pattern of Mn-XRN1. At the tissue level, Mn-XRN1 was significantly expressed in the ovary. During development, Mn-XRN1 was significantly expressed at the CS stage of the embryo, on the 10th day post-larval and in the O2 stage of ovarian reproduction. The in situ hybridization results showed the location of Mn-XRN1 in the ovary. The expression of Mn-VASA was significantly increased after in vivo injection of Mn-XRN1 dsRNA. This suggests that Mn-XRN1 negatively regulates the expression of Mn-VASA. Furthermore, we counted the number of M. nipponense at various stages of ovarian reproduction on different days after RNAi. The results showed that ovarian development was significantly accelerated. In general, the results of the present study indicate that Mn-XRN1 has an inhibitory effect on the ovarian maturation of M. nipponense. The inhibitory effect might be through negative regulation of Mn-VASA.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3