Comparative Plastomes of Curcuma alismatifolia (Zingiberaceae) Reveal Diversified Patterns among 56 Different Cut-Flower Cultivars

Author:

Wang Jie12,Liao Xuezhu2,Li Yongyao2,Ye Yuanjun3,Xing Guoming1,Kan Shenglong2ORCID,Nie Liyun2,Li Sen1,Tembrock Luke R.4ORCID,Wu Zhiqiang2ORCID

Affiliation:

1. College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China

2. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

3. Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

4. Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA

Abstract

Curcuma alismatifolia (Zingiberaceae) is an ornamental species with high economic value due to its recent rise in popularity among floriculturists. Cultivars within this species have mixed genetic backgrounds from multiple hybridization events and can be difficult to distinguish via morphological and histological methods alone. Given the need to improve identification resources, we carried out the first systematic study using plastomic data wherein genomic evolution and phylogenetic relationships from 56 accessions of C. alismatifolia were analyzed. The newly assembled plastomes were highly conserved and ranged from 162,139 bp to 164,111 bp, including 79 genes that code for proteins, 30 tRNA genes, and 4 rRNA genes. The A/T motif was the most common of SSRs in the assembled genomes. The Ka/Ks values of most genes were less than 1, and only two genes had Ka/Ks values above 1, which were rps15 (1.15), and ndhl (1.13) with petA equal to 1. The sequence divergence between different varieties of C. alismatifolia was large, and the percentage of variation in coding regions was lower than that in the non-coding regions. Such data will improve cultivar identification, marker assisted breeding, and preservation of germplasm resources.

Funder

Guangdong Pearl River Talent Program

Science Technology and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

Chinese Academy of Agricultural Sciences Elite Youth Program

Scientific Research Foundation for Principal Investigators and Kunpeng Institute of Modern Agriculture at Foshan

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3