Production and Characterization of K562 Cellular Clones Hyper-Expressing the Gene Encoding α-Globin: Preliminary Analysis of Biomarkers Associated with Autophagy

Author:

Zurlo Matteo1ORCID,Gasparello Jessica1ORCID,Cosenza Lucia Carmela1ORCID,Breveglieri Giulia1ORCID,Papi Chiara1ORCID,Zuccato Cristina12ORCID,Gambari Roberto12ORCID,Finotti Alessia12ORCID

Affiliation:

1. Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy

2. Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy

Abstract

One of the most relevant pathophysiological hallmarks of β-thalassemia is the accumulation of toxic α-globin chains inside erythroid cells, which is responsible for their premature death (hemolysis). In this context, the availability of an experimental model system mimicking the excess in α-globin chain production is still lacking. The objective of the present study was to produce and characterize K562 cellular clones forced to produce high amounts of α-globin, in order to develop an experimental model system suitable for studies aimed at the reduction of the accumulation of toxic α-globin aggregates. In the present study, we produced and characterized K562 cellular clones that, unlike the original K562 cell line, stably produced high levels of α-globin protein. As expected, the obtained clones had a tendency to undergo apoptosis that was proportional to the accumulation of α-globin, confirming the pivotal role of α-globin accumulation in damaging erythroid cells. Interestingly, the obtained clones seemed to trigger autophagy spontaneously, probably to overcome the accumulation/toxicity of the α-globin. We propose this new model system for the screening of pharmacological agents able to activate the full program of autophagy to reduce α-globin accumulation, but the model may be also suitable for new therapeutical approaches targeted at the reduction of the expression of the α-globin gene.

Funder

Wellcome Trust

AIFA

EU THALAMOSS Project

FIR and FAR funds from the University of Ferrara

Interuniversity Consortium for Biotechnology

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3