Affiliation:
1. Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/School of Forestry, Hainan University, Sanya 572019, China
2. Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou 570228, China
Abstract
Plants respond to wounding by reprogramming the expression of genes involved in secondary metabolism. Aquilaria trees produce many bioactive secondary metabolites in response to wounding, but the regulatory mechanism of agarwood formation in the early response to mechanical wounding has remained unclear. To gain insights into the process of transcriptome changes and to determine the regulatory networks of Aquilaria sinensis to an early response (15 days) to mechanical wounding, we collected A. sinensis samples from the untreated (Asc1) and treated (Asf1) xylem tissues and performed RNA sequencing (RNA-seq). This generated 49,102,523 (Asc1) and 45,180,981 (Asf1) clean reads, which corresponded to 18,927 (Asc1) and 19,258 (Asf1) genes, respectively. A total of 1596 differentially expressed genes (DEGs) were detected in Asf1 vs. Asc1 (|log2 (fold change)| ≥ 1, Padj ≤ 0.05), of which 1088 were up-regulated and 508 genes were down-regulated. GO and KEGG enrichment analysis of DEGs showed that flavonoid biosynthesis, phenylpropanoid biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis pathways might play important roles in wound-induced agarwood formation. Based on the transcription factor (TF)-gene regulatory network analysis, we inferred that the bHLH TF family could regulate all DEGs encoding for farnesyl diphosphate synthase, sesquiterpene synthase, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS), which contribute to the biosynthesis and accumulation of agarwood sesquiterpenes. This study provides insight into the molecular mechanism regulating agarwood formation in A. sinensis, and will be helpful in selecting candidate genes for improving the yield and quality of agarwood.
Funder
Scientific Research Fund Project of Hainan University
Subject
Genetics (clinical),Genetics
Reference77 articles.
1. Stress-protective role of secondary metabolites: Diversity of functions and mechanisms;Edreva;Gen. Appl. Plant Physiol.,2008
2. Prospects for the use of plant cell cultures in food biotechnology;Davies;Curr. Opin. Biotechnol.,2014
3. Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery;Mohamed;J. Forestry Res.,2014
4. Wang, S., Yu, Z., Wang, C., Wu, C., Guo, P., and Wei, J. (2018). Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules, 23.
5. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants;Chen;Chem. Biodivers.,2012
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献