QTL Mapping for Ovary- and Fruit-Related Traits in Cucumis sativus-C. hystrix Introgression Line IL52

Author:

Wang Yuhui1,Fang Yu1,Ning Shixiong1,Xia Lei1,Zhan Jinyi1ORCID,Yang Zhilong1,Cheng Chunyan1ORCID,Lou Qunfeng1ORCID,Li Ji1,Chen Jinfeng1ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China

Abstract

IL52 is a valuable introgression line obtained from interspecific hybridization between cultivated cucumber (Cucumis sativus L., 2n = 14) and the wild relative species C. hystrix Chakr. (2n = 24). IL52 exhibits high resistance to a number of diseases, including downy mildew, powdery mildew, and angular leaf spot. However, the ovary- and fruit-related traits of IL52 have not been thoroughly investigated. Here, we conducted quantitative trait loci (QTL) mapping for 11 traits related to ovary size, fruit size, and flowering time using a previously developed 155 F7:8 RIL population derived from a cross between CCMC and IL52. In total, 27 QTL associated with the 11 traits were detected, distributed on seven chromosomes. These QTL explained 3.61% to 43.98% of the phenotypic variance. Notably, we identified a major-effect QTL (qOHN4.1) on chromosome 4 associated with the ovary hypanthium neck width and further delimited it into a 114-kb candidate region harboring 13 candidate genes. Furthermore, the QTL qOHN4.1 is co-localized with the QTL detected for ovary length, mature fruit length, and fruit neck length, all residing within the consensus QTL FS4.1, suggesting a plausible pleiotropic effect.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Jiangsu Shuangchuang (Mass Innovation and entrepreneurship) Talent Program

Jiangsu Agricultural Innovation of New Cultivars

National Key Research and Development Program of China

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3