Identification of Key Functional Genes and LncRNAs Influencing Muscle Growth and Development in Leizhou Black Goats

Author:

Zhao Xiuhui123,Ye Junning123,Lin Xunkai1,Xue Huiwen1,Zou Xian2,Liu Guangbin13ORCID,Deng Ming13,Sun Baoli13,Guo Yongqing13,Liu Dewu13,Li Yaokun13ORCID

Affiliation:

1. College of Animal Science, South China Agricultural University, Guangzhou 510642, China

2. State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3. National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China

Abstract

Meat yield and quality are important economic traits of livestock. Herein, longissimus dorsi (LD) muscles of Leizhou black goats aged 0, 3, and 6 months were used to identify differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) by high-throughput RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to analyze differentially expressed genes. Expression levels of regulator of calcineurin 1 (RCAN1) and olfactory receptor 2AP1 (OR2AP1) were significantly different in LD muscles of goats aged 0, 3, and 6 months, indicating potentially important roles in postnatal muscle development. Differentially expressed lncRNAs and mRNAs were mainly enriched in biological processes and pathways related to cellular energy metabolism, consistent with previous studies. Three lncRNAs, TCONS_00074191, TCONS_00074190, and TCONS_00078361, may play a cis-acting role with methyltransferase-like 11B (METTL11B) genes and participate in the methylation of goat muscle proteins. Some of the identified genes may provide valuable resources for future studies on postnatal meat development in goat muscles.

Funder

Modern Agricultural Industrial Technology System of Guangdong Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3