Forest Fire Risk Prediction Based on Stacking Ensemble Learning for Yunnan Province of China

Author:

Li Yanzhi12ORCID,Li Guohui2,Wang Kaifeng3,Wang Zumin3,Chen Yanqiu4ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

2. Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China

3. College of Information Engineering, Dalian University, Dalian 116622, China

4. Department of Fire Protection Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

Forest fire risk prediction is essential for building a forest fire defense system. Ensemble learning methods can avoid the problem of difficult model selection for disaster susceptibility prediction and can significantly improve modeling accuracy. This study introduces a stacking ensemble learning model for predicting forest fire risks in Yunnan Province by integrating various data types, such as meteorological, topographic, vegetation, and human activity factors. A total of 70,274 fire points and an equal number of randomly selected nonfire points were used to develop the model, with 70% of the data allocated for training and the remaining 30% for testing. The stacking model combined four diverse machine learning methods: random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multilayer perceptron (MLP). We evaluated the model’s predictive performance using metrics like accuracy, area under the characteristic curve (AUC), and fire density (FD). The results demonstrated that the stacking fusion model exhibited remarkable accuracy with an AUC of 0.970 on the test set, significantly surpassing the performance of individual machine learning models, which had AUC values ranging from 0.935 to 0.953. Furthermore, the stacking fusion model effectively captured the maximum fire density in extremely high susceptibility areas, demonstrating enhanced generalization capabilities.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3