Characterizing Forest Fuel Properties and Potential Wildfire Dynamics in Xiuwu, Henan, China

Author:

Shi Yan12,Feng Changping1,Zhang Liwei3,Huang Wen3,Wang Xin1,Yang Shipeng1,Chen Weiwei1,Xie Wenjie4

Affiliation:

1. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Collaborative Innovation Center for Effificient Utilization of Water Resources, Zhengzhou 450046, China

3. Sichuan Institute of Land and Spatial Planning, Chengdu 610081, China

4. College of Horticulture, Northwest A&F University, Yangling 712100, China

Abstract

As global climate change and human activities increasingly influence our world, forest fires have become more frequent, inflicting significant damage to ecosystems. This study conducted measurements of combustible materials (moisture content ratio, ignition point, and calorific value) across 14 representative sites. We employed Pearson correlation analysis to ascertain the significant differences in combustible properties and utilized entropy methods to evaluate the fire resistance of materials at these sites. Cluster analysis led to the development of four combustible models. Using BehavePlus software, we simulated their fire behaviors and investigated the effects of wind speed and slope on these behaviors through sensitivity analysis. The results revealed notable differences in the moisture content ratios among different types of combustibles, especially in sites 2, 3, 8, 9, and 13, indicating higher fire risks. It was also found that while humus has a higher ignition point and lower calorific value, making it less prone to ignite, the resultant fires could be highly damaging. The Pearson analysis underscored significant variations in the moisture content ratios among different combustibles, while the differences in ignition points and calorific values were not significant. Sites 5 and 6 demonstrated stronger fire resistance. The simulations indicated that fire-spread speed, fireline intensity, and flame length correlate with, and increase with, wind speed and slope. Sensitivity analysis confirmed the significant influence of these two environmental factors on fire behavior. This study provides critical insights into forest fire behavior, enhancing the capability to predict and manage forest fires. Our findings offer theoretical support for forest fire prediction and a scientific basis for fire management decision-making.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3