Abstract
Current industrial products must meet quality requirements defined by international standards. Most commercial surface inspection systems give qualitative detections after a long, cumbersome and very expensive configuration process made by the seller company. In this paper, a new surface defect detection method is proposed based on 3D laser reconstruction. The method compares the long products, scan by scan, with their desired shape and produces differential topographic images of the surface at very high speeds. This work proposes a novel method where the values of the pixels in the images have a direct translation to real-world dimensions, which enables a detection based on the tolerances defined by international standards. These images are processed using computer vision techniques to detect defects and filter erroneous detections using both statistical distributions and a multilayer perceptron. Moreover, a systematic configuration procedure is proposed that is repeatable and can be performed by the manufacturer. The method has been tested using train track rails, which reports better results than two photometric systems including one commercial system, in both defect detection and erroneous detection rate. The method has been validated using a surface inspection rail pattern showing excellent performance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献