Performance Analysis of Lake Water Cooling Coupled with a Waste Heat Recovery System in the Data Center

Author:

Yin Peng1,Guo Yang2,Zhang Man2,Wang Jiaqiang2ORCID,Zhang Linfeng3ORCID,Feng Da4,Ding Weike5

Affiliation:

1. Jiangsu Communications Services Co., Ltd., Nanjing 210006, China

2. School of Energy Science and Engineering, Central South University, Changsha 410083, China

3. School of Transportation, Southeast University, Nanjing 211189, China

4. China Telecom Corporation Limited Suzhou Branch, Suzhou 215025, China

5. China Information Consulting & Designing Institute Co., Ltd., Nanjing 210019, China

Abstract

Data centers (DCs) require continuous cooling throughout the year and produce a large amount of low-grade waste heat. Free cooling and waste heat recovery techniques are promising approaches to reduce DC energy consumption. Although previous studies have explored diverse waste heat utilization strategies, there is a significant gap in combining waste heat recovery with lake water cooling in DCs. Therefore, this study proposed a system integrating lake water cooling with waste heat recovery for DCs. To evaluate the energy-saving performance of the suggested system, the influence of waste heat recovery locations and volumes has been investigated. An analysis of the improvement in system parameters is also conducted. The study’s findings highlight that targeted recovery of waste heat from sources like chilled water or air in server rooms can significantly reduce the cooling energy demand of the system. The results show that recovering heat from the return air of IT equipment can yield a remarkable power usage effectiveness (PUE) and coefficient of performance (COP) of 1.19 and 10.17, and the energy consumption of the cooling system is reduced to 10.06%. Moreover, the outcomes reveal the potential for substantial energy savings of up to 26.05% within the proposed system by setting the chilled water and air supply temperatures to 16 and 20 °C, respectively.

Funder

National Natural Science Foundation of China

Chenzhou Municipal Science and Technology Bureau

International Science and Technology Cooperation Programme of China

Opening Foundation of Anhui Province Key Laboratory of Intelligent Building & Building Energy Saving

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3