Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes

Author:

Chen Xuequn12,Han Cuihong34,Li Shuxin34,Wang Zezheng34,Liu Dan12,Guan Qinghua12,Zhang Wenjing34ORCID

Affiliation:

1. Water Resources Research Institute of Shandong Province, Jinan 250013, China

2. Shandong Provincial Key Laboratory of Water Resources and Environment, Jinan 250013, China

3. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

4. College of New Energy and Environment, Jilin University, Changchun 130021, China

Abstract

Jinan, renowned as the “Spring City” in China, relies significantly on karst groundwater as an indispensable resource for socio-economic development, playing a crucial role in ecological regulation, tourism, and historical and cultural aspects. The Yufu River basin, situated within Jinan’s karst region, represents a vital riverine leakage zone. Therefore, investigating the evolutionary characteristics and causative mechanisms of surface water and groundwater at different aquifer levels in the Yufu River basin can provide a scientific foundation for the protection of Jinan’s springs. This study, based on hydrogeochemical and isotopic data from the river water, shallow groundwater, deep groundwater, and springs in the Yufu River basin, explored the hydrogeochemical evolution in this region. The findings revealed significant spatial variations in the hydrochemical parameters of the Yufu River basin. Groundwater received contributions from surface water, while springs represented a mixture from both surface water and various recharge aquifers. Dominant ions include Ca2+ and HCO3−, with prevailing hydrochemical types being HCO3·SO4-Ca and HCO3-Ca. Atmospheric precipitation served as the primary source of recharge for surface water and groundwater in the Yufu River basin, albeit influenced by pronounced evaporation processes. The hydrochemical composition in the Yufu River basin was primarily attributed to water–rock interactions, mainly driven by the combined effects of carbonate rock, silicate rock, and gypsum weathering and dissolution. Among these, the weathering and dissolution of carbonate rocks played a dominant role, with human activities exerting a relatively minor influence on the hydrochemistry of the Yufu River basin.

Funder

Shandong Key Laboratory of Water Resources and Environment

Optional Subjects of the Water Resources Research Institute of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3