A 3D Relative-Motion Context Constraint-Based MAP Solution for Multiple-Object Tracking Problems
Author:
Wang Zhongli,Fan Litong,Cai Baigen
Abstract
Multi-object tracking (MOT), especially by using a moving monocular camera, is a very challenging task in the field of visual object tracking. To tackle this problem, the traditional tracking-by-detection-based method is heavily dependent on detection results. Occlusion and mis-detections will often lead to tracklets or drifting. In this paper, the tasks of MOT and camera motion estimation are formulated as finding a maximum a posteriori (MAP) solution of joint probability and synchronously solved in a unified framework. To improve performance, we incorporate the three-dimensional (3D) relative-motion model into a sequential Bayesian framework to track multiple objects and the camera’s ego-motion estimation. A 3D relative-motion model that describes spatial relations among objects is exploited for predicting object states robustly and recovering objects when occlusion and mis-detections occur. Reversible jump Markov chain Monte Carlo (RJMCMC) particle filtering is applied to solve the posteriori estimation problem. Both quantitative and qualitative experiments with benchmark datasets and video collected on campus were conducted, which confirms that the proposed method is outperformed in many evaluation metrics.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献