Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD

Author:

Korobiichuk IgorORCID,Mel’nick Viktorij,Shybetskyi VladyslavORCID,Kostyk SergiiORCID,Kalinina MyroslavaORCID

Abstract

This article presents the possibility of evaluating the efficiency of the heat exchange element with a special stamping plate, which is based on the results of computer simulation. The method is based on a comparative analysis of convective heat transfer models implemented in ANSYS using a k-ε turbulence model. To conduct the study, 3D models of three different types of cavity geometry formed between two heat exchange plates (flat plate, chevron plate, and plate with conical stampings) were built. Simulation was performed by finite element analysis in ANSYS for channels formed by the three types of plates, one of which is a new configuration. The results of hydrodynamic and heat exchange parameters allowed for establishing the efficiency of convective heat exchange for plates of known structures and to compare them with the proposed one. It was found that the plates with conical stamping form the smallest channels through which the fluid moves. The velocity of the coolant is uniform throughout the cross section of the channel and equal to 0.294 m/s; the value of the heat transfer coefficient is the largest of the three models and is 5339 W/(m K), while the pressure drop is 1060 Pa. Taking into account the simulation results, the best heat transfer parameters were shown by the channel formed by plates with conical stamping and the highest pressure drop. To increase the efficiency, indicated by the ratio of heat transfer coefficients to hydraulic resistance, the geometry of the plate with conical stamping was optimized. As a result of optimization, it was found that the optimal geometric parameters of the heat exchange plate with conical stamping were achieved at a 55° inclination angle and 1.5 mm height for the cone. The results of this study can be used in the design of heat exchange elements of new structures with optimal parameters for highly efficient heating of liquid coolants.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3