Positive Aspects of Green Roof Reducing Energy Consumption in Winter

Author:

Juras PeterORCID

Abstract

Greening structures attract worldwide attention because of their multidisciplinary benefits. Green roofs are considered one of the best ways to eliminate summer overheating, mitigate climate change, or reduce the urban heat island effect. The winter season and its impact on building energy consumption are often overlooked. Common standards do not take a green roof structure into consideration because of possible high water content in their layers. Additional roof layers may have a positive effect during the winter; they help reduce surface overcooling in cloudless winter nights. This paper analyses experimental measurements taken on two different extensive green roofs and compares the results with a single-ply roof (R) with a PVC membrane. Surface overcooling of the R due to radiation reaching up to 10 °C, whereas the green roof membrane is protected. The influence of thermal loss is not so important for the current climate in Central Europe, as the required U-values are lower than 0.1. The temperature difference is reduced from 17 °C on the membrane to 0.7 °C on the top of the concrete slab. The green roof is still advantageous, and the vegetation surface has better thermal stability. The advantage is clearly recognisable in the area of the condensation zone. The difference between these two extensive green roofs is very small in regard to the accuracy of the temperature sensors. The outcome showed the thermal loss reduction compared to the common flat roof; however, after analysis, it was more marginal than expected.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3