Design, Build, and Evaluation of an AC Loss Measurement Rig for High-Speed Superconducting Bearings

Author:

Siamaki MohammadORCID,Storey James G.ORCID,Wiesehoefer Lars,Badcock Rodney A.ORCID

Abstract

Friction and heat generated in conventional bearings impose a limit on maximum design speed in electrical machines. Superconducting bearings offer the potential for low loss, simplified, and passively stable bearings that can overcome the speed limit and operate at high loads. Although such bearings are contactless and seem to be loss free, AC loss mainly caused by magnetic field inhomogeneity gradually slows down the rotating body. This loss, whose mechanism has not been fully explored, is measured through spin-down tests where the rotational speed of the spinning rotor is measured as a function of time. However, there are some challenges in performing a reliable spin-down test. In this paper, we discuss these challenges as well as the engineering of an experimental test rig that enables us to spin-up, release, and recapture the levitated permanent magnet. We also discuss the specifications of the driving mechanism including the self-aligning coupling, which accommodates permanent magnets of different sizes. Initial test results at 6600 rpm are discussed and further technical improvements to the test rig suggested. This rig will be used as a key tool to explore the AC loss mechanism and inform the design of bearings for high-speed superconducting machines.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3