Examining the Performance of Implantable-Grade Lithium-Ion Cells after Overdischarge and Thermally Accelerated Aging

Author:

Harding Jonathon R.ORCID,Han Binghong,Madden Samuel B.,Horn Quinn C.

Abstract

For implanted medical devices containing rechargeable batteries, maximizing battery lifetime is paramount as surgery is required for battery replacement. In non-life-sustaining applications (e.g., spinal cord stimulators or sacral nerve modulation), these implants may be left unused and unmaintained for extended periods, according to patient preference or in the case of unexpected life events. In this study, we examine the performance of two commercial lithium-ion cells intended for implantable neurostimulators (using lithium titanium oxide (LTO) and graphite as the negative electrode) when subjected to repeated deep overdischarge and to aging at a high state of charge (SOC). The graphite-based cells exhibited significant performance decline and swelling after overdischarge and became unable to store a charge after 42 days at 0 V. In contrast, the LTO-based cells exhibited minimal changes in performance even after 84 days (the length of the study) at 0 V. When subjected to an accelerated aging protocol at 100% SOC, the graphite-based cells were found to age more rapidly than the LTO cells, which exhibited minimal aging over the course of the study period. These results show that practical LTO-based lithium-ion cells are much more tolerant of abuse as a result of neglect and misuse and are worth considering for use in high-value applications where battery replacement is difficult or impossible.

Funder

Medtronic

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3