Abstract
Ca-doped TiO2 films were synthesized by the modified sol-gel method and employed as the electron transport material of perovskite solar cells (PSCs). Morphological, optoelectronic, thermal, and electrical studies of thin films were investigated through XRD, RAMAN, SEM, AFM, UV-Vis, FTIR, and IV characteristics. Ca doping was detected with the help of structural properties while morphological analysis revealed that thin films based on Ca-doped titania are crack-free, homogenous, and uniformly distributed. Further optoelectronic properties have shown a promising conversion efficiency of 9.79% for 2% Ca-doped titania followed by 1% Ca-doped titania, while 3% have shown the lowest conversion efficiency among these prepared samples. The 2% an optimized doping of Ca has shown an almost two-fold increase in conversion efficiency in comparison to pristine TiO2, along with an increase in current density from 15 mA⋅cm−2 to 19.3 mA⋅cm−2. Improved energy efficiency and higher current density are attributed to faster electron transportation; moreover, the optimized percentage of Ca doping seems to be an effective approach to improve the PSCs’ performance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献