Experimental and Numerical Analyses of a Novel Wing-In-Ground Vehicle

Author:

van Sluis MartijnORCID,Nasrollahi SinaORCID,Gangoli Rao ArvindORCID,Eitelberg Georg

Abstract

The AeroCity is a new form of transportation concept that has been developed to provide high-speed ground transportation at a much lower cost than the existing high-speed railway. Utilizing the Wing-in-Ground (WIG) effect, the AeroCity vehicle does not require complex infrastructures like other contemporary concepts, such as the Hyperloop or Maglev trains. In the current work, the aerodynamic characteristics of the AeroCity vehicle are examined through a Computational Fluid Dynamics (CFD) analysis. The results from the CFD analysis qualitatively match with the findings of wind tunnel experiments. Surface streamlines and boundary layer measurements correspond well with the numerical data. However, the force measurements show a discrepancy. It is found that the separation bubble over the side plates is not captured by the CFD, and this is responsible for an under-prediction of the drag at higher free-stream velocities. The Transition SST model improved the matching between the experiments and numerical simulations. The influence of the moving ground is numerically investigated, and the effect of non-moving ground on the vehicle aerodynamics was found not to be significant. Finally, the inclusion of the track wall is examined. It is found that the merging of the wingtip vortices is responsible for a significant drag increase and, therefore, an alternative track geometry should be investigated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. High-Speed Railways in China: A Look at Construction Cost, China Transport Topics;Ollivier,2014

2. https://www.railcenter.nl/wp-content/uploads/2017/02/02-Innorail-Inspiratie-ideeen-2017-Everard-van-Rees-v01.pdf

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3