Abstract
Leading-edge inflatable (LEI) kites use a pressurized tubular frame to structurally support a single skin membrane canopy. The presence of the tubes on the pressure side of the wing leads to characteristic flow phenomena for this type of kite. In this paper, we present steady-state Reynolds-Averaged Navier-Stokes (RANS) simulations for a LEI wing for airborne wind energy applications. Expanding on previous work where only the leading-edge tube was considered, eight additional strut tubes that support the wing canopy are now included. The shape of the wing is considered to be constant. The influence of the strut tubes on the aerodynamic performance of the wing and the local flow field is assessed, considering flow configurations with and without side-slip. The simulations show that the aerodynamic performance of the wing decreases with increasing side-slip component of the inflow. On the other hand, the chordwise struts have little influence on the integral lift and drag of the wing, irrespective of the side-slip component. The overall flow characteristics are in good agreement with previous studies. In particular, it is confirmed that at a low Reynolds number of Re=105, a laminar separation bubble exists on the suction side of this hypothetical rigid wing shape with perfectly smooth surface. The destruction of this bubble at low angles of attack impacts negatively on the aerodynamic performance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference27 articles.
1. Future of Wind—Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper),2019
2. Global Energy Transformation: A Roadmap to 2050,2019
3. Offshore Renewables: An Action Agenda for Deployment,2021
4. Design and Experimental Characterization of a Pumping Kite Power System
5. Aerodynamic characterization of a soft kite by in situ flow measurement
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献