Feasibility of Telecom-Wavelength Photonic Integrated Circuits for Gas Sensors

Author:

Hänsel Andreas,Heck Martijn

Abstract

To be of commercial interest, gas sensors must optimise, among others, sensitivity, selectivity, longevity, cost and measurement speed. Using the example of ammonia, we establish that integrated optical sensors provide means to maintain the benefits of optical detection set-ups at, in principle, a lower cost and smaller footprint than currently available commercial products. Photonic integrated circuits (PICs) can be used in environmental and agricultural monitoring. The small footprint and great cost scaling of PICs allow for sensor networks with multiple devices. We show, that Indium Phosphide based commercial foundries reached the technological maturity to enable ammonia detection levels at less than 100 ppb. The current unavailability of portable, low cost ammonia sensors with such detection levels prevents emission monitoring, for example, in pig farms. The feasibility of these sensors is investigated by applying the common noise figures of the multiproject wafer platforms operating around 1550 nm to a model for an absorption measurement. The analysis is extended to other relevant gas species with absorption features near telecom-wavelengths.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

2. DOL 53 Ammonia Sensorhttp://www.dol-sensors.com/en/news/Pages/DOL-53-ammonia-sensor.aspx

3. Sensidyne Ammonia Sensorshttps://www.sensidynegasdetection.com/support/application-support/ammonia-gas-detection-and-monitoring.php

4. Ammonia sensors and their applications—a review

5. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3