Affiliation:
1. M. N. Mikheev Institute of Metal Physics, 620108 Ekaterinburg, Russia
Abstract
The slave–particle representation is a promising method to treat the properties of exotic strongly correlated systems. We develop a unified approach to describe both the paramagnetic state with possible spin–liquid features and states with strong long-range or short-range magnetic order. Combining the Kotliar–Ruckenstein representation and fractionalized spin–liquid deconfinement picture, the Mott transition and Hubbard subbands are considered. The spectrum in the insulating state is significantly affected by the presence of the spinon spin–liquid spectrum and a hidden Fermi surface. Presenting a modification of the Kotliar–Ruckenstein representation in the spin–wave region, we treat the case of magnetic order, with special attention being paid to the half-metallic ferromagnetic state. The formation of small and large Fermi surfaces for doped current carriers in the antiferromagnetic state is also discussed.
Funder
Ministry of Science and Higher Education of the Russian Federation
Russian Science Foundation
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials