Effects of the Exciton Fine Structure Splitting on the Entanglement-Based Quantum Key Distribution

Author:

Hernández-Borda Adrián Felipe12ORCID,Rojas-Sepúlveda María Paula12ORCID,Ramírez-Gómez Hanz Yecid12ORCID

Affiliation:

1. Grupo de Física Teórica y Computacional, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia

2. Grupo QUCIT, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia

Abstract

The reliable transmission of secure keys is one of the essential tasks to be efficiently accomplished by quantum information processing, and the use of entangled particles is a very important tool toward that goal. However, efficient production of maximally entangled states is still a challenge for further progress in quantum computing and quantum communication. In the search for optimal sources of entanglement, quantum dots have emerged as promising candidates, but the presence of dephasing in the generated entangled states raises questions about their real usefulness in large-scale quantum networks. In this work, we evaluate the effects of the exciton fine structure splitting, present in most quantum dot samples, on the fidelity of the BBM92 protocol for quantum key distribution. We find that the protocol’s performance is heavily impacted by such splitting and establish an upper limit for the product between the energy splitting and the exciton lifetime to have a dependable distributed key.

Funder

Sistema General de Regalías Colombia

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Nielsen, M.A., and Chuang, I.L. (2001). Quantum Computation and Quantum Information, Cambridge University Press.

2. The security of practical quantum key distribution;Scarani;Rev. Mod. Phys.,2009

3. Applications of single photons to quantum communication and computing;Couteau;Nat. Rev. Phys.,2023

4. Entanglement-based secure quantum cryptography over 1120 kilometres;Yin;Nature,2020

5. Twin-field quantum key distribution over 830-km fibre;Wang;Nat. Photonics,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3