Atomic Structure of Mn-Doped CoFe2O4 Nanoparticles for Metal–Air Battery Applications

Author:

Pussi Katariina12ORCID,Ding Keying3ORCID,Barbiellini Bernardo14ORCID,Ohara Koji56ORCID,Yamada Hiroki5ORCID,Onuh Chuka3,McBride James7ORCID,Bansil Arun4ORCID,Chiang Ray K.8,Kamali Saeed910ORCID

Affiliation:

1. Physics Department, School of Engineering Science, LUT University, 53851 Lappeenranta, Finland

2. Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland

3. Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA

4. Physics Department, Northeastern University, Boston, MA 02115, USA

5. Diffraction and Scattering Division, Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Hyogo, Sayo-gun 679-5198, Japan

6. Faculty of Materials for Energy, Shimane University, 1060, Nishi-Kawatsu-Cho, Matsue 690-8504, Japan

7. Chemistry Department, Vanderbilt University, Nashville, TN 37235, USA

8. Nanomaterials Laboratory, Far East University, Hsing-Shih, Tainan 74448, Taiwan

9. Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA

10. Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, USA

Abstract

We discuss the atomic structure of cobalt ferrite nanoparticles doped with Mn via an analysis based on combining atomic pair distribution functions with high energy X-ray diffraction and high-resolution transmission electron microscopy measurements. Cobalt ferrite nanoparticles are promising materials for metal–air battery applications. Cobalt ferrites, however, generally show poor electronic conductivity at ambient temperatures, which limits their bifunctional catalytic performance in oxygen electrocatalysis. Our study reveals how the introduction of Mn ions promotes the conductivity of the cobalt ferrite electrode.

Funder

Academy of Finland

U.S. Office of Naval Research

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3