Torsional Low-Strain Test for Nondestructive Integrity Examination of Existing High-Pile Foundation

Author:

Zhang YunpengORCID,El Naggar M. HeshamORCID,Wu Wenbing,Wang Zongqin

Abstract

Low-strain tests are widely utilized as a nondestructive approach to assess the integrity of newly piled foundations. So far, the examination of existing pile foundations is becoming an indispensable protocol for pile recycling or post-disaster safety assessment. However, the present low-strain test is not capable of testing existing pile foundations. In this paper, the torsional low-strain test (TLST) is proposed to overcome this drawback. Both the upward and downward waves are considered in the TLST wave propagation model established in this paper so that a firm theoretical basis is grounded for the test signal interpretations. A concise semi-analytical solution is derived and its rationality is verified by comparisons with the existing solutions for newly piled foundations and the finite element results. The main conclusions of this study can be drawn as follows: (1). by placing the sensors where the incident wave is applied, the number of reflected signals can be minimized; (2). the defects can be more evidently identified if the incident wave/sensors are input/installed close to the superstructure/pile head.

Funder

National Natural Science Foundation of China

the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic response of a large-diameter end-bearing pile in permafrost;Scientific Reports;2024-01-05

2. Monitoring of the Bond State between the Concrete-Filled Steel Tube Pile and Surrounding Soil;Shock and Vibration;2023-05-18

3. Theoretical Analysis of Dynamic Response of Pipe Pile with Multi-Defects;Journal of Marine Science and Engineering;2023-01-03

4. A Review of Pile Foundations in Viscoelastic Medium: Dynamic Analysis and Wave Propagation Modeling;Energies;2022-12-13

5. A Critical Analysis of Existing Intelligent Analytical Techniques for Pile Integrity Test;2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3