Affiliation:
1. Department of Mechanical System Engineering, Graduate School of Science and Technology, Kumamoto University, P.O. Box 860-8555, Chuo-ku, Kumamoto 860-8555, Japan
2. Department of Mechanical Engineering, Government Polytechnic College, Directorate of Technical Education, Adoor 691 551, Kerala, India
Abstract
The present study analyzed the effect of temperature, pH, pre-treatment and mixing ratio on the anaerobic digestion process. The parameters during the anaerobic co-digestion of cow manure and food waste were then optimized using the Taguchi experimental design method. ANOVA was carried out to find the significant parameters which influence biogas production. Experimental tests were carried out at laboratory-scale reactors kept at different temperatures (28 °C, 35 °C, and 50 °C). The specific methanogenic performance (SMP) during anaerobic digestion at higher temperatures was characterized with the analysis of acetate, propionate, butyrate, hydrogen, glucose, and formate, and was validated with the literature. The improvement of biogas production with different pre-treatments, i.e., ultrasonic, autoclave, and microwave techniques, was also analyzed. The results showed that the reactor that was maintained at 35 °C showed the highest biogas production, while the reactor that was maintained at a lower temperature (28 °C) produced the lower volume of biogas. As the retention time increases, the amount of biogas production increases. Methanogenic activities of microorganisms were reduced at higher temperature conditions (65 °C). Biogas production increased by 28.1%, 20.23%, and 13.27% when the substrates were treated with ultrasonic, autoclave, and microwave, respectively, compared to the untreated substrate. The optimized condition for the highest biogas production during anaerobic co-digestion of food waste and cow manure is a temperature of 35 °C, a pH of 7 and a mixing ratio (CM:FW = 1.5:0.5). ANOVA showed that temperature is the most important input parameter affecting biogas production, followed by mixing ratio.
Funder
Kumamoto University, Japan