Author:
Bhavsar Parag,Balan Tudor,Dalla Fontana Giulia,Zoccola Marina,Patrucco Alessia,Tonin Claudio
Abstract
In the EU, sheep bred for dairy and meat purposes are of low quality, their economic value is not even enough to cover shearing costs, and their wool is generally seen as a useless by-product of sheep farming, resulting in large illegal disposal or landfilling. In order to minimize environmental and health-related problems considering elemental compositions of discarded materials such as waste wool, there is a need to recycle and reuse waste materials to develop sustainable innovative technologies and transformation processes to achieve sustainable manufacturing. This study aims to examine the application of waste wool in biocomposite production with the help of a sustainable hydrolysis process without any chemicals and binding material. The impact of superheated water hydrolysis and mixing hydrolyzed wool fibers with kraft pulp on the performance of biocomposite was investigated and characterized using SEM, FTIR, tensile strength, DSC, TGA, and soil burial testing in comparison with 100% kraft pulp biocomposite. The superheated water hydrolysis process increases the hydrophilicity and homogeneity and contributes to increasing the speed of biodegradation. The biocomposite is entirely self-supporting, provides primary nutrients for soil nourishment, and is observed to be completely biodegradable when buried in the soil within 90 days. Among temperatures tested for superheated water hydrolysis of raw wool, 150 °C seems to be the most appropriate for the biocomposite preparation regarding physicochemical properties of wool and suitability for wool mixing with cellulose. The combination of a sustainable hydrolysis process and the use of waste wool in manufacturing an eco-friendly, biodegradable paper/biocomposite will open new potential opportunities for the utilization of waste wool in agricultural and packaging applications and minimize environmental impact.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Reference80 articles.
1. Report on Key Statistics 2019 European Pulp and Paper Industries
https://www.cepi.org/statistics/
2. Packaging Waste Statistics—Eurostat Explained Statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics
3. Paper & Paperboard Production & Consumption for Europe
https://paperonweb.com/Europe.htm
4. Yearbook of Forest Products 2010–2014 European Commision,2017
5. Organosolv pulping. 3. Ethanol pulping of wheat straw;El-Sakhawy;Cellul. Chem. Technol.,1996
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献