Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field

Author:

Hung Li-Chi1,Pan Nai-Hsin2ORCID

Affiliation:

1. Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (YunTech), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan

2. Department of Civil and Construction Engineering, YunTech, 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan

Abstract

Ionic liquids are molten salts that possess excellent chemical and thermal stability. Due to their inherent qualities in green chemistry, ionic liquids have been identified as potential substitutes for traditional organic solvents. These useful physical and chemical properties lead to some promising applications in fields such as building polymer engineering alternative materials and renewable energy technologies. Although they are classified as green solvents, these new solvents exist in a high-temperature environment, which is related to thermochemical reactivity and safety; there are few related studies. To analyze the possible high-temperature application environment of ionic liquids in the future, we analyzed the new ionic liquid 1-Benzyl-3-methylimidILlium bis (trifluoromethylsulfonyl) imide ([BZMIM][TF2N]), which lacks thermal analysis basis. This study used thermogravimetric analysis as the basis of the reaction model. We calculated the thermal hazard, kinetics, and parameter analysis of the reaction characterized by experimental thermal analysis data. The reaction model can be used to construct the actual temperature change calculation. The results show that [BZMIM][TF2N] will enter a runaway reaction when the temperature exceeds 270 °C. When operating [BZMIM][TF2N] at high temperatures, attention should be paid to the possibility of thermal hazards caused by its self-decomposition reaction.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3