Affiliation:
1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
2. Guangxi Subtropical Crops Research Institute, Nanning 530000, China
Abstract
In this work, the performance of medium-pressure UV/peracetic acid (MPUV/PAA/H2O2) was explored on removing reactive black 5 (RB5), aniline (ANL), and polyvinyl alcohol (PVA), three typical refractory contaminants in printing and dyeing wastewater, compared with MPUV/H2O2. MPUV/PAA/H2O2 showed 75.0, 44.9, and 57.7% removals of RB5, ANL, and PVA, respectively, within 5 min. The removal of RB5 increased from 68.98 to 91.2%, with pH increasing from 6 to 9, while the removals of ANL and PVA were much less pH-dependent. Quenching experiment results indicated that UV photolysis and radical (i.e., •OH and R-C•) oxidation contributed to RB5 removal, while PAA showed high activity in the oxidation of ANL. For PVA, •OH oxidation and UV photolysis were likely the main mechanisms. The coexisting natural organic matter had a negative effect on the degradation of RB5 and PVA. In addition, MPUV/PAA/H2O2 could effectively degrade those pollutants without increasing the toxicity. This work provides a theoretical reference for the utilization of MPUV/PAA/H2O2 in removing structurally diverse refractory contaminants from printing and dyeing wastewater.
Funder
National Natural Science Foundation of China
the Shanghai Committee of Science and Technology
the Fundamental Research Funds for the Central Universities
the Key R&D Program of Guangdong Province
the Science and Technology Service Program of Chinese Academy of Science
the Key R&D Program of Inner Mongolia Autonomous Region
the National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献