Comparison of Medium-Pressure UV/Peracetic Acid to Remove Three Typical Refractory Contaminants of Textile Wastewater

Author:

Zhu Yanping1,Cao Yuxuan1,Shu Shihu1,Zhu Pengjin2,Wang Dongfang1ORCID,Xu He1,Cai Dongqing1

Affiliation:

1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2. Guangxi Subtropical Crops Research Institute, Nanning 530000, China

Abstract

In this work, the performance of medium-pressure UV/peracetic acid (MPUV/PAA/H2O2) was explored on removing reactive black 5 (RB5), aniline (ANL), and polyvinyl alcohol (PVA), three typical refractory contaminants in printing and dyeing wastewater, compared with MPUV/H2O2. MPUV/PAA/H2O2 showed 75.0, 44.9, and 57.7% removals of RB5, ANL, and PVA, respectively, within 5 min. The removal of RB5 increased from 68.98 to 91.2%, with pH increasing from 6 to 9, while the removals of ANL and PVA were much less pH-dependent. Quenching experiment results indicated that UV photolysis and radical (i.e., •OH and R-C•) oxidation contributed to RB5 removal, while PAA showed high activity in the oxidation of ANL. For PVA, •OH oxidation and UV photolysis were likely the main mechanisms. The coexisting natural organic matter had a negative effect on the degradation of RB5 and PVA. In addition, MPUV/PAA/H2O2 could effectively degrade those pollutants without increasing the toxicity. This work provides a theoretical reference for the utilization of MPUV/PAA/H2O2 in removing structurally diverse refractory contaminants from printing and dyeing wastewater.

Funder

National Natural Science Foundation of China

the Shanghai Committee of Science and Technology

the Fundamental Research Funds for the Central Universities

the Key R&D Program of Guangdong Province

the Science and Technology Service Program of Chinese Academy of Science

the Key R&D Program of Inner Mongolia Autonomous Region

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3