Developing a Sustainable Machine Learning Model to Predict Crop Yield in the Gulf Countries

Author:

Assous Hamzeh F.1ORCID,AL-Najjar Hazem2ORCID,Al-Rousan Nadia3ORCID,AL-Najjar Dania1ORCID

Affiliation:

1. Finance Department, School of Business, King Faisal University, Al Ahsa 31982, Saudi Arabia

2. Department of Computer, Abdul Aziz Al Ghurair School of Advanced Computing (ASAC), Luminus Technical University College, Amman 11732, Jordan

3. MIS Department, Faculty of Business, Sohar University, Sohar 311, Oman

Abstract

Crop yield prediction is one of the most challenging tasks in agriculture. It is considered to play an important role and be an essential step in decision-making processes. The goal of crop prediction is to establish food availability for the coming years, using different input variables associated with the crop yield domain. This paper aims to predict the yield of five of the Gulf countries’ crops: wheat, dates, watermelon, potatoes, and maize (corn). Five independent variables were used to develop a prediction model, namely year, rainfall, pesticide, temperature changes, and nitrogen (N) fertilizer; all these variables are calculated by year. Moreover, this research relied on one of the most widely used machine learning models in the field of crop yield prediction, which is the neural network model. The neural network model is used because it can predict complex relationships between independent and dependent variables. To evaluate the performance of the prediction models, different statistical evaluation metrics are adopted, including mean square error (MSE), root-mean-square error (RMSE), mean bias error (MBE), Pearson’s correlation coefficient, and the determination coefficient. The results showed that all Gulf countries are affected mainly by four independent variables: year, temperature changes, pesticides, and nitrogen (N) per year. Moreover, the average of the best crop yield prediction results for the Gulf countries showed that the RMSE and R2 are 0.114 and 0.93, respectively. This provides initial evidence regarding the capability of the neural network model in crop yield prediction.

Funder

Ministry of Education of Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3