Potential Use of Water Treatment Sludge as Partial Replacement for Clay in Eco-Friendly Fired Clay Bricks

Author:

Ahmadi Masoud1ORCID,Hakimi Babak2,Mazaheri Ahmadreza1,Kioumarsi Mahdi3ORCID

Affiliation:

1. Department of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd 6919969737, Iran

2. Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran 14115397, Iran

3. Department of Built Environment, OsloMet-Oslo Metropolitan University, Pilestredet 35, 0166 Oslo, Norway

Abstract

The traditional production process of clay bricks involves the extraction of significant amounts of raw materials and consumes considerable energy, leading to anthropogenic greenhouse gas emissions and environmental degradation. Using environmentally friendly materials in the construction industry has become an attractive alternative for mitigating sustainability issues. One such alternative is incorporating waste materials, such as water treatment sludge (WTS), into clay brick production. This research aims to assess the viability of using WTS as a replacement for conventional clay in fired clay brick production, thereby mitigating environmental pollution. Five distinct mixtures were created, with WTS replacing clay at 0, 20, 40, 60, and 80% ratios. The mechanical properties and durability of the produced bricks were analyzed through various tests, such as Atterberg limits, optimum water content, unconfined compression, apparent porosity, compressive strength, flexural strength, density, water absorption, and efflorescence. The results demonstrated that as WTS content increased, Atterberg limits and apparent porosity increased. The bulk density, compressive strength, and bending capacity of the specimens were found to decrease as the WTS replacement ratio increased. Additionally, moderate efflorescence was observed in samples with higher sludge ratios.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3