Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm

Author:

Ntombela Mlungisi1ORCID,Musasa Kabeya1ORCID

Affiliation:

1. Department of Electrical Power Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa

Abstract

As they become more widespread, electric vehicles (EVs) will require more electricity to charge. It is expected that a range of grid transportation solutions that complement one another and considerable transmission infrastructure changes will be needed to achieve this goal. Strategic planning and control, including economic models and strategies to engage and reward users, can reduce energy loss on the power network. This would eliminate grid upgrades. Bidirectional charging of EVs can help transmission systems cope with EV allocation. Power loss and voltage instability are the transmission network’s biggest issues. Adding EV units to the transmission network usually solves these problems. Therefore, EVs need the right layout and proportions. This study determined where and how many radial transmission network EVs there should be before and after the adjustment. To discover the best EV position and size before and after the dial network modification, a hybrid genetic algorithm for particle swarm optimization (HGAIPSO) was utilized. Electric vehicles coordinated in an active transmission network reduce power losses, raise voltage profiles, and improve system stability. Electric vehicles are responsible for these benefits. The simulation showed that adding EVs to the testing system reduced power waste. The system’s minimum bus voltage likewise increased. The proposed technology reduced transmission system voltage fluctuations and power losses, according to the comparison analysis. The IEEE-30 bus test system reduced real power loss by 40.70%, 36.24%, and 42.94% for the type A, type B, and type C EV allocations, respectively. The IEEE-30 bus voltage reached 1.01 pu.

Funder

Durban University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3