Numerical and Experimental Efficiency Estimation in Household Battery Energy Storage Equipment

Author:

Moncecchi Matteo,Borselli Alessandro,Falabretti Davide,Corghi Lorenzo,Merlo MarcoORCID

Abstract

Battery energy storage systems (BESS) are spreading in several applications among transmission and distribution networks. Nevertheless, it is not straightforward to estimate their performances in real life working conditions. This work is aimed at identifying test power profiles for stationary residential storage applications capable of estimating BESS performance. The proposed approach is based on a clustering procedure devoted to group daily power profiles according to their battery efficiency. By performing a k-means clustering on a large dataset of load and generation profiles, four standard charge/discharge profiles have been identified to test BESS’ performances. Different clustering approaches have been considered, each of them splitting the dataset according to different properties of the profiles. A well-performing clustering approach resulted, based on the adoption of reference parameters for the clustering process of the maximum power exchanged by the BESS and the variation of battery energy content. Firstly, the results have been proven through a numerical procedure based on a BESS electrical model and on the definition of a key performance index. Then, an experimental validation has been carried out on a pre-commercial sodium-nickel chloride BESS: this device is available in the IoT lab of Politecnico di Milano within the H2020 InteGRIDy project.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Electricity Information 2018

2. A Physically-Based Electrical Model for Lithium-Ion Cells

3. Energy storage coupling in a high efficiency household scenario: A real life experimental application

4. International Electrotechnical Commission IEC 62660-1: Secondary lithium-ion cells for the propulsion of electric road vehicles-Part 1: Performance testing 2018https://webstore.iec.ch/publication/28965

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Testing of Electrochemical Cells for Aging Models in BESS;Energies;2023-09-29

2. Service stacking on residential BESS: RES integration by flexibility provision on ancillary services markets;Sustainable Energy, Grids and Networks;2023-09

3. Blockchain-based data management mechanism for virtual power plants;Applied Mathematics and Nonlinear Sciences;2023-05-16

4. AC/DC Conversion Efficiency of a Sodium-Nickel based BESS: an experimental characterization;2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3