Abstract
Battery energy storage systems (BESS) are spreading in several applications among transmission and distribution networks. Nevertheless, it is not straightforward to estimate their performances in real life working conditions. This work is aimed at identifying test power profiles for stationary residential storage applications capable of estimating BESS performance. The proposed approach is based on a clustering procedure devoted to group daily power profiles according to their battery efficiency. By performing a k-means clustering on a large dataset of load and generation profiles, four standard charge/discharge profiles have been identified to test BESS’ performances. Different clustering approaches have been considered, each of them splitting the dataset according to different properties of the profiles. A well-performing clustering approach resulted, based on the adoption of reference parameters for the clustering process of the maximum power exchanged by the BESS and the variation of battery energy content. Firstly, the results have been proven through a numerical procedure based on a BESS electrical model and on the definition of a key performance index. Then, an experimental validation has been carried out on a pre-commercial sodium-nickel chloride BESS: this device is available in the IoT lab of Politecnico di Milano within the H2020 InteGRIDy project.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference38 articles.
1. Electricity Information 2018
2. A Physically-Based Electrical Model for Lithium-Ion Cells
3. Energy storage coupling in a high efficiency household scenario: A real life experimental application
4. International Electrotechnical Commission IEC 62660-1: Secondary lithium-ion cells for the propulsion of electric road vehicles-Part 1: Performance testing 2018https://webstore.iec.ch/publication/28965
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献