Author:
Berdiyeva Perizat,Karabanova Anastasiia,Grinderslev Jakob B.,Johnsen Rune E.,Blanchard Didier,Hauback Bjørn C.,Deledda Stefano
Abstract
This paper describes the synthesis, crystal structure, and NH3 sorption properties of Mg1-xMnx(NH3)6Cl2 (x = 0–1) mixed metal halide ammines, with reversible NH3 storage capacity in the temperature range 20–350 °C. The stoichiometry (x) dependent NH3 desorption temperatures were monitored using in situ synchrotron radiation powder X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. The thermal analyses reveal that the NH3 release temperatures decrease in the mixed metal halide ammines in comparison to pure Mg(NH3)6Cl2, approaching the values of Mn(NH3)6Cl2. Desorption occurs in three steps of four, one and one NH3 moles, with the corresponding activation energies of 54.8 kJ⋅mol-1, 73.2 kJ⋅mol-1 and 91.0 kJ⋅mol-1 in Mg0.5Mn0.5(NH3)6Cl2, which is significantly lower than the NH3 release activation energies of Mg(NH3)6Cl2 (Ea = 60.8 kJ⋅mol-1, 74.8 kJ⋅mol-1 and 91.8 kJ⋅mol-1). This work shows that Mg1-xMnx(NH3)yCl2 (x = 0 to 1, y = 0 to 6) is stable within the investigated temperature range (20–350 °C) and also upon NH3 cycling.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献