Abstract
In this article, an investigation of a free-piston Stirling engine-based micro-cogeneration (μCHP) unit is presented. This work is a step towards making the system calculations more reliable, based on a data-driven model, which enables the time-domain simulation of the μCHP behavior. A laboratory setup was developed that allowed for the measurement of a micro-cogeneration unit during long-term operation with a variable thermal load. The maximum efficiency of electricity generation was equal to 13.2% and the highest overall efficiency was equal to 95.7%. A model of the analyzed μCHP system was developed and validated. The simulation model was based on the device’s characteristics that were obtained from the measurements; it enables time-domain calculations, taking into account the different operating modes of the device. The validation of the system showed satisfactory compliance of the model with the measurements: for the period modeled of 24 h, the error in the heat generation fluctuated in the range 0.31–4.50%, the error in the electricity generation was in the range 2.48–4.70%, the error in the natural gas consumption was in the range 0.26–4.59%, and the engine’s runtime error was in the range 0.14–8.58%. The modelling process is easily applicable to other energy systems for detailed analysis.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献