Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism

Author:

Chittoor-Vinod Vinita G.ORCID,Nichols R. Jeremy,Schüle BirgittORCID

Abstract

Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson’s disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer’s pathology, hailing LRRK2 parkinsonism as the “Rosetta stone” of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors—either increasing toxicity or providing resilience—will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3