Abstract
In this work, the effect of ultrasonic nanocrystal surface modification (UNSM) treatment at room and high temperatures (RT and HT) on the high-frequency fatigue behavior of Inconel 718 alloy fabricated by laser metal deposition (LMD) process was experimentally investigated. UNSM treatment at RT and HT modified a surface morphology and produced a nanostructured surface layer with a thickness of approximately 120 and 140 µm, respectively. The surface roughness of the untreated sample was reduced, while the surface hardness was notably increased after the UNSM treatment at RT and HT. Both increased with increasing the UNSM treatment temperature. Fatigue behavior of the untreated samples at various stress levels was slightly improved after the UNSM treatment at RT and HT. This is mainly due to the formation of a fine grained nanostructured surface layer with reduced porosity and highly induced compressive residual stress. Fatigue mechanisms of the samples were comprehensively discussed based on the quantitative SEM fractographic analysis.
Funder
Industrial Technology Innovation Development Project of the Ministry of Commerce, Industry and Energy, Rep. Korea
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献