Author:
Liu Yongjie,He Fupeng,Ma Donglai,Hu Qingqing,You Zhixiong
Abstract
Manganese dioxide is typically reduced to a bivalent state before being extracted; here, sulfur is considered an efficient reductant and sulfur–based reduction has been industrialized in China. In this study, the reaction mechanism between MnO2 and gaseous sulfur was investigated. Thermodynamically, the reduction of MnO2 by gaseous sulfur is feasible. The predominant phase diagram as functions of temperature and input S2(g) fraction in the S2–MnO2 system was calculated. Experimental validation showed that MnO2 was reduced stepwise to low-valence manganese oxides and manganese sulfate. The phase composition of the roasted products was complex, and MnS was inevitably formed. The valence state as well as microstructure of manganese dioxide during reduction roasting were also investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). The reaction process could be described by an unreacted nuclear model. Manganese was extracted by sulfuric acid solution after reduction by sulfur waste. In sulfuric acid, 95.2 wt% Mn extraction was achieved, using a roasting temperature of 450 °C, roasting time of 30 min, and S2/MnO2 molar ratio of 0.40. With the same conditions, low Fe extraction was achieved. On the other hand, in deionized water, 24.3 wt% Mn extraction was achieved, confirming the formation of MnSO4.
Funder
National Natural Science Foundation of China
Fundamental and Frontier Research Project of Chongqing
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献