Abstract
Cu-0.4Cr (wt.%) alloys with the microalloying of Hf elements were subjected to a modified rolling–aging process to achieve high strength, high electrical conductivity and high ductility simultaneously. Transmission electron microscopy and X-ray line broadening analysis were conducted to characterize the microstructures of these alloys. Deformation twins and high-density dislocations were introduced into the copper alloys via the modified rolling–aging process and the microalloying of Hf, improving the mechanical properties of copper alloys. The Cu-Cr-Hf alloy with a reduced Hf content performed well in terms of strength, electrical conductivity and ductility. The microalloying of 0.4 wt.% Hf in the Cu-0.4Cr alloy was sufficient to achieve a good combination of high tensile strength (593 MPa), high uniform elongation (~5%) and high electrical conductivity (80.51% IACS).
Funder
National Key Research & Development Plan
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献