Investigating Nanoscale Contact Using AFM-Based Indentation and Molecular Dynamics Simulations

Author:

Roy ShyamalORCID,Wille Sönke,Mordehai DanORCID,Volkert Cynthia A.ORCID

Abstract

In this work we study nanocontact plasticity in Au thin films using an atomic force microscope based indentation method with the goal of relating the changes in surface morphology to the dislocations created by deformation. This provides a rigorous test of our understanding of deformation and dislocation mechanisms in small volumes. A series of indentation experiments with increasing maximum load was performed. Distinct elastic and plastic regimes were identified in the force-displacement curves, and the corresponding residual imprints were measured. Transmission electron microscope based measured dislocation densities appear to be smaller than the densities expected from the measured residual indents. With the help of molecular dynamics simulations we show that dislocation nucleation and glide alone fail to explain the low dislocation density. Increasing the temperature of the simulations accelerates the rate of thermally activated processes and promotes motion and annihilation of dislocations under the indent while transferring material to the upper surface; dislocation density decreases in the plastic zone and material piles up around the indent. Finally, we discuss why a significant number of cross-slip events is expected beneath the indent under experimental conditions and the implications of this for work hardening during wear.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3