Numerical Study on the Influence of Distributing Chamber Volume on Metallurgical Effects in Two-Strand Induction Heating Tundish

Author:

Yang Bin,Deng Anyuan,Kang Xiaolei,Duan Pengfei,Wang Engang

Abstract

Reducing the volume of distributing chamber by shortening its width is one of the ways to obtain good metallurgical effects for a large two-strand induction heating tundish. A multi-field coupling numerical model was established to figure out the effect of distributing chamber volume on the flow field, temperature field of molten steel, and removal of inclusions. Three tundishes with distributing chamber widths of 1.216 m (tundish A), 0.838 m (tundish B), and 0.606 m (tundish C) were modeled. The results indicated that reducing the width of the distributing chamber from 1.216 m to 0.838 and 0.606 m could improve the fastest heating rate from 0.4 K/min to 0.6 and 0.8 K/min and reduce the energy consumption from 476 kWh to 444 and 434 kWh. The temperature fluctuation of molten steel in the distributing chamber rose with the decrease in distributing chamber volume during the continuous casting process. Besides, tundish B performs the best temperature uniformity. The flow field in the distributing chamber was no longer symmetrical, and a short-circuit flow appeared when the width was reduced to 0.606 m. As a result, the floating ratio and removal ratio of inclusions decreased and the ratio of inclusions flowing into the mold sharply increased in tundish C. When the width was reduced from 1.216 to 0.838 m, the floating ratio of inclusions had little change and the removal ratio increased slightly. The floating efficiency increased with the decrease in the volume of distributing chamber, and the removal efficiency is the highest in tundish B. Taken together, tundish B should be adopted.

Funder

National Natural Science Foundation of China

the 111 Project (2.0) of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3