Abstract
Flood risk assessment is an important tool for disaster warning and prevention. In this study, an integrated approach based on a D-number-improved analytic hierarchy process (D-AHP) and a self-organizing map (SOM) clustering algorithm are proposed for urban flooding risk assessment. The urban flood inundation model and geographic information system (GIS) technology were used to quantify the assessment indices of urban flood risk. The D-AHP approach was adopted to determine the weights of the indices, which effectively makes up for the shortcomings of the AHP in dealing with uncertain evaluation information (such as fuzzy and incomplete information). In addition, the SOM clustering algorithm was applied to determine the flood risk level. It is a data-driven approach that avoids the subjective determination of a flood risk classification threshold. The proposed approach for flood risk assessment was implemented in Zhengzhou, China. The flood risk was classified into five levels: highest risk, higher risk, medium risk, lower risk, and the lowest risk. The proportion of the highest risk areas was 9.86%; such areas were mainly distributed in the central and eastern parts of the Jinshui District, the eastern part of the Huiji District, and the northeastern part of the Guancheng District, where there were low terrain and serious waterlogging. The higher risk areas accounted for 24.26% of the study area, and were mainly distributed in the western and southern parts of the Jinshui District, the southern part of the Huiji District, the middle and eastern parts of the Zhongyuan District, the northeastern part of the Erqi District, and the northwestern part of the Guancheng District, which consisted of economically developed areas of dense population and buildings, matching well with historical flooding events. To verify the effectiveness of the proposed approach, traditional approaches for risk assessment were compared. The comparison indicated that the proposed approach is more reasonable and accurate than the traditional approaches. This study showed the potential of a novel approach to flood risk assessment. The results can provide a reference for urban flood management and disaster reduction in the study area.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Scientific and Technological Projects of Henan Province
Subject
General Earth and Planetary Sciences
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献