An Accurate Maritime Radio Propagation Loss Prediction Approach Employing Neural Networks

Author:

Shen Shankun,Zhang Wei,Zhang Hangkai,Ren Qiang,Zhang Xin,Li Yimin

Abstract

The radio propagation loss prediction model is essential for maritime communication. The oceanic tropospheric duct is much more complicated than the atmospheric structure on land due to the rough sea surface influence, and it leads to difficulties in loss prediction. Classical radio wave propagation loss prediction models are either based on complicated electromagnetic wave theories or rely on empirical data. Consequently, they suffer from low accuracy and a limited range of application. To address this issue, a novel maritime propagation loss prediction approach is proposed, which fully exploits the data for training. In this new approach, 3D sea surface contour profiles are generated based on the Pierson–Moskowitz spectrum theory and the direction expansion formula Stereo Wave Observation Program (SWOP), by sweeping the parameters. The full-wave propagation procedure of radio signals over the sea surface is simulated by commercial EM analysis software CST Studio Suite. Based on the large quantity of simulated data, the BP neural network is employed to fit the radio propagation loss and obtain the sea surface radio wave propagation prediction model. Other classical machine learning methods are also compared to validate the proposed approach. Traditional empirical model construction relies on observation data. This approach, for the first time, proposed an automatic scheme which covers the whole procedure from the data generation to prediction model training. It avoids the requirements for on-site observation, as well as significantly decreases the cost of experiments. The application scope of the prediction model such as propagation distance range and working frequency range could be adaptive through adjustments for simulated sea size and simulated working frequency. This approach is validated to save 99% of prediction time in comparison with the full-wave simulations. The prediction model trained via our proposed method could obtain the coefficient of determination R2 which is over 0.92, demonstrating the superiority of this method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. Radio Communication Model for Underwater WSN;Uribe;Proceedings of the 2009 3rd International Conference on New Technologies, Mobility and Security,2009

2. Investigation on Radio Wave Propagation in Shallow Seawater: Simulations and Measurements;Jimenez;Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms),2016

3. Underwater wireless communication system

4. Experimental Investigations of Electromagnetic Wave Propagation in Seawater;Shaw;Proceedings of the 2006 European Microwave Conference,2006

5. Propagation of Electromagnetic Waves at MHz Frequencies Through Seawater

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3