Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media

Author:

Wang Ning,Shi Ying,Zhou Hui

Abstract

The development of multi-component seismic acquisition technology creates new possibilities for the high-precision imaging of complex media. Compared to the scalar acoustic wave equation, the elastic wave equation takes the information of P-waves, S-waves, and converted waves into account simultaneously, enabling accurate description of actual seismic propagation. However, inherent attenuation is one of the important factors that restricts multi-component high-precision migration imaging. Its influence is mainly reflected in the following three ways: first, the attenuation of the amplitude energy makes the deep structure display unclear; second, phase distortion introduces errors to the positioning of underground structures; and third, the loss of high frequency components reduces imaging resolution. Therefore, it is crucial to fully consider the absorption and attenuation characteristics of the real Earth during seismic modeling and imaging. This paper aims to develop an accurate attenuation compensation reverse-time migration scheme for complex heterogeneous viscoelastic media. We first utilize a novel viscoelastic wave equation with decoupled fractional Laplacians to depict the Earth’s attenuation behavior. Then, an adaptive stable attenuation compensation operator is developed to realize high-precision attenuation compensation imaging. Several synthetic and field data analyses verify the effectiveness of the proposed method.

Funder

Open Funds of National Engineering Laboratory for Offshore Oil Exploration

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3