A Mixed Methods Approach for Fuel Characterisation in Gorse (Ulex europaeus L.) Scrub from High-Density UAV Laser Scanning Point Clouds and Semantic Segmentation of UAV Imagery

Author:

Hartley Robin J. L.ORCID,Davidson Sam J.ORCID,Watt Michael S.ORCID,Massam Peter D.,Aguilar-Arguello SamuelORCID,Melnik Katharine O.ORCID,Pearce H. GrantORCID,Clifford Veronica R.

Abstract

The classification and quantification of fuel is traditionally a labour-intensive, costly and often subjective operation, especially in hazardous vegetation types, such as gorse (Ulex europaeus L.) scrub. In this study, unmanned aerial vehicle (UAV) technologies were assessed as an alternative to traditional field methodologies for fuel characterisation. UAV laser scanning (ULS) point clouds were captured, and a variety of spatial and intensity metrics were extracted from these data. These data were used as predictor variables in models describing destructively and non-destructively sampled field measurements of total above ground biomass (TAGB) and above ground available fuel (AGAF). Multiple regression of the structural predictor variables yielded correlations of R2 = 0.89 and 0.87 for destructively sampled measurements of TAGB and AGAF, respectively, with relative root mean square error (RMSE) values of 18.6% and 11.3%, respectively. The best metrics for non-destructive field-measurements yielded correlations of R2 = 0.50 and 0.49, with RMSE values of 40% and 30.8%, for predicting TAGB and AGAF, respectively, indicating that ULS-derived structural metrics offer higher levels of precision. UAV-derived versions of the field metrics (overstory height and cover) predicted TAGB and AGAF with R2 = 0.44 and 0.41, respectively, and RMSE values of 34.5% and 21.7%, demonstrating that even simple metrics from a UAV can still generate moderate correlations. In further analyses, UAV photogrammetric data were captured and automatically processed using deep learning in order to classify vegetation into different fuel categories. The results yielded overall high levels of precision, recall and F1 score (0.83 for each), with minimum and maximum levels per class of F1 = 0.70 and 0.91. In conclusion, these ULS-derived metrics can be used to precisely estimate fuel type components and fuel load at fine spatial resolutions over moderate-sized areas, which will be useful for research, wildfire risk assessment and fuel management operations.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3