Water Surface Mapping from Sentinel-1 Imagery Based on Attention-UNet3+: A Case Study of Poyang Lake Region

Author:

Jiang Chaowei,Zhang HongORCID,Wang ChaoORCID,Ge Ji,Wu FanORCID

Abstract

The mapping of water surfaces is important for water resource and flood monitoring. Synthetic Aperture Radar (SAR) images can be used to monitor water bodies and detect floods over large areas. To address the problem of low identification accuracy in different time phases and different scales of water area, a water surface mapping method based on Attention-UNet3+ with SAR images is proposed in this paper. In the model, full-scale skip connections are introduced for combining feature maps from different scales and improving the accuracy of narrow water identification; the spatial attention module is used to obtain the importance of each connected feature, which can reduce the number of false alarms caused by speckle noise and water shadows in SAR data; the deep supervision module is used to learn hierarchical representative features from comprehensive aggregated feature maps to provide the periodic output capability of the model and meet the needs of rapid and large-scale water identification. The effectiveness of Attention-UNet3+ is verified by experiments in the Poyang Lake region with Sentinel-1 SAR images. The results show that the proposed Attention-UNet3+ outperforms the conventional threshold segmentation and deep learning models such as UNet, Deepvlabv3+, and SegNet, with an average IOU/Kappa value of 0.9502/0.9698. Multitemporal Sentinel-1 images in 2021 covering Poyang Lake are used for time series water surface mapping with the proposed method, and it is found that the detected water area of Poyang Lake has a good correlation with the corresponding water level values at observation stations. The Pearson coefficients are about 0.96. The above results indicate that the proposed method achieves good water surface mapping performance.

Funder

National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3