Precise Positioning Method of Moving Laser Point Cloud in Shield Tunnel Based on Bolt Hole Extraction

Author:

Ji Changqi,Sun Haili,Zhong Ruofei,Li Jincheng,Han Yulong

Abstract

Mobile laser scanning technology used for deformation detection of shield tunnel is usually two-dimensional, which is expanded into three-dimensional (3D) through mileage, resulting in low positioning accuracy. This study proposes a 3D laser point cloud positioning method that is divided into rings in the mileage direction and blocks in the ring direction to improve the positional accuracy for shield tunnels. First, the cylindrical tunnel wall is expanded into a plane and the bolt holes are extracted using the self-adaptive parameter adjustment cloth simulation filter (CSF) algorithm combined with a density-based spatial clustering of applications with noise (DBSCAN) algorithm. Second, the mean-shift algorithm is used to obtain the center point of the bolt hole, and a model is designed to recognize the center point of different splicing blocks. Finally, the center point is combined with the standard straight-line equation to fit the straight-line positioning seam, achieving an accurate ring and block segmentation of a shield tunnel as a 3D laser point cloud. The proposed method is compared with existing methods to verify its feasibility and high accuracy using the seams located by the measured tunnel point cloud data and in the measured point cloud. The average differences between the circumferential seams positioned using the proposed method and those in the point cloud at the left waist, vault, and right waist were 3, 4, and 5 mm, respectively, and the average difference between the longitudinal seams was 3.4 mm The proposed research method provides important technical and theoretical support for tunnel safety monitoring and detection.

Funder

Haili Sun and Ruofei Zhong

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3