Author:
Li Xiaoyu,Chen Sheng,Li Zhi,Huang Chaoying,Hu Junjun
Abstract
Raindrop size distribution (DSD) can be used to improve the accuracy of radar quantitative precipitation estimation (QPE) and further understand the microphysical process of precipitation; however, its spatio-temporal characteristics vary with different climates, rain types, and geographical locations. Due to the lack of observations, the DSD characteristics in the Beibu Gulf, especially at the rainfall center of Guangxi in South China, is poorly understood. In this paper, these regional DSD characteristics were analyzed during the warm season with an upgraded version of the OTT Particle Size Velocity (Parsivel) (OTT2) disdrometer. The DSD datasets from June to October 2020 and March to May 2021 were grouped into convective and stratiform precipitation by rain rate (R). The rainfall parameters were calculated from DSDs to further understand the rain characteristics. The results showed that: (1) the regional DSDs feature the lowest concentration of largest-sized drops when compared with the statistical results for other areas such as Zhuhai in South China, Nanjing in East China, Hubei province in Central China and Beijing in North China; (2) the raindrop spectra have an excellent fit with the three-parameter gamma distribution, particularly in regard to the medium-size raindrops; (3) the μ–Λ relation is closer to the coastal regions than the inland area of South China; (4) the localized Z−R relations differ greatly for convective rainfall (Z = 202.542 R1.553) and stratiform rainfall (Z = 328.793 R1.363). This study is the first study on DSDs in the Beibu Gulf region. The above findings will provide a better understanding of the microphysical nature of surface precipitation for different rain types along the Beibu Gulf in southern China, which may improve precipitation retrievals from remote sensing observations.
Funder
Guangxi Natural Science Foundation Project
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献