Occlusion and Deformation Handling Visual Tracking for UAV via Attention-Based Mask Generative Network

Author:

Bai YashuoORCID,Song YongORCID,Zhao YufeiORCID,Zhou Ya,Wu Xiyan,He Yuxin,Zhang Zishuo,Yang Xin,Hao Qun

Abstract

Although the performance of unmanned aerial vehicle (UAV) tracking has benefited from the successful application of discriminative correlation filters (DCF) and convolutional neural networks (CNNs), UAV tracking under occlusion and deformation remains a challenge. The main dilemma is that challenging scenes, such as occlusion or deformation, are very complex and changeable, making it difficult to obtain training data covering all situations, resulting in trained networks that may be confused by new contexts that differ from historical information. Data-driven strategies are the main direction of current solutions, but gathering large-scale datasets with object instances under various occlusion and deformation conditions is difficult and lacks diversity. This paper proposes an attention-based mask generation network (AMGN) for UAV-specific tracking, which combines the attention mechanism and adversarial learning to improve the tracker’s ability to handle occlusion and deformation. After the base CNN extracts the deep features of the candidate region, a series of masks are determined by the spatial attention module and sent to the generator, and the generator discards some features according to these masks to simulate the occlusion and deformation of the object, producing more hard positive samples. The discriminator seeks to distinguish these hard positive samples while guiding mask generation. Such adversarial learning can effectively complement occluded and deformable positive samples in the feature space, allowing to capture more robust features to distinguish objects from backgrounds. Comparative experiments show that our AMGN-based tracker achieves the highest area under curve (AUC) of 0.490 and 0.349, and the highest precision scores of 0.742 and 0.662, on the UAV123 tracking benchmark with partial and full occlusion attributes, respectively. It also achieves the highest AUC of 0.555 and the highest precision score of 0.797 on the DTB70 tracking benchmark with the deformation attribute. On the UAVDT tracking benchmark with the large occlusion attribute, it achieves the highest AUC of 0.407 and the highest precision score of 0.582.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference86 articles.

1. On-Road Pedestrian Tracking Across Multiple Driving Recorders

2. SAT: Single-Shot Adversarial Tracker

3. Vision-Based Target-Following Guider for Mobile Robot

4. Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion

5. Visual object tracking using adaptive correlation filters;Bolme;Proceedings of the 2010 IEEE Computer SOCIETY Conference on Computer Vision and Pattern Recognition,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3