Kinematic Zenith Tropospheric Delay Estimation with GNSS PPP in Mountainous Areas

Author:

Gratton Paul,Banville Simon,Lachapelle Gérard,O’Keefe KyleORCID

Abstract

The use of global navigation satellite systems (GNSS) precise point positioning (PPP) to estimate zenith tropospheric delay (ZTD) profiles in kinematic vehicular mode in mountainous areas is investigated. Car-mounted multi-constellation GNSS receivers are employed. The Natural Resources Canada Canadian Spatial Reference System PPP (CSRS-PPP) online service that currently processes dual-frequency global positioning system (GPS) and Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) measurements and is now capable of GPS integer ambiguity resolution is used. An offline version that can process the above and Galileo measurements simultaneously, including Galileo integer ambiguity resolution is also tested to evaluate the advantage of three constellations. A multi-day static data set observed under open sky is first tested to determine performance under ideal conditions. Two long road profile tests conducted in kinematic mode are then analyzed to assess the capability of the approach. The challenges of ZTD kinematic profiling are numerous, namely shorter data sets, signal shading due to topography and forests of conifers along roads, and frequent losses of phase lock requiring numerous but not always successful integer ambiguity re-initialization. ZTD profiles are therefore often only available with float ambiguities, reducing system observability. Occasional total interruption of measurement availability results in profile discontinuities. CSRS-PPP outputs separately the zenith hydrostatic or dry delay (ZHD) and water vapour content or zenith wet delay (ZWD). The two delays are analyzed separately, with emphasis on the more unpredictable and highly variable ZWD, especially in mountainous areas. The estimated delays are compared with the Vienna Mapping Function 1 (VMF1), which proves to be highly effective to model the large-scale profile variations in the Canadian Rockies, the main contribution of GNSS PPP being the estimation of higher frequency ZWD components. Of the many conclusions drawn from the field experiments, it is estimated that kinematic profiles are generally determined with accuracy of 10 to 20 mm, depending on the signal harshness of the environment.

Funder

iCore Alberta Innovates

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. A Guide to Using International GNSS Service (IGS) Products 2015https://www.igs.org/wp-content/uploads/2019/08/UsingIGSProductsVer21_cor.pdf

2. Chapter 25: Precise Point Positioning;Kouba,2017

3. Evaluation of GPS Precipitable Water over Canada and the IGS Network

4. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe

5. Chapter 33: The International GNSS Service;Johnston,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3